近日,华中农业大学生命科学技术学院、农业微生物学国家重点实验室环境微生物王革娇教授团队在国际学术期刊Science of the Total Environment发表了微生物氧化有机硒和单质硒的最新研究成果,首次证明了微生物参与土壤有机硒的氧化,增加土壤硒的生物有效性和植物可利用性,为植物富硒提供了新的思路。
硒(Se)是生命必需的微量元素,其中人体已发现25种硒蛋白,具有抗氧化、抗癌、抗病毒、提高免疫力等多种功能;硒对克山病、癌症、阿尔兹海默症等多种疾病具有治疗和预防作用。植物主要吸收氧化态硒,且富硒农业土壤中以还原态有机硒为主,但硒氧化的研究薄弱,微生物是否会氧化有机硒并如何影响植物吸收硒等尚不清楚。
该研究从含硒土壤中分离获得四株硒氧化细菌,分别为戴尔氏菌Dyella sp. LX-1和LX-66,以及红杆菌Rhodanobacter sp. LX-99和LX-100。在纯培养条件下,菌株均可氧化硒代蛋氨酸(SeMet)、硒代胱氨酸(SeCys2)、硒脲和单质硒Se(0)生成亚硒酸盐,有机硒的氧化速率显著高于单质硒的氧化速率。在灭菌酸性或碱性土壤中,硒氧化细菌均显著促进有机硒和单质硒的氧化。此外,在富硒土壤中,分别添加四株硒氧化细菌后,均显著增加了土壤中水溶性硒(SOL-Se)、可交换及碳酸盐结合硒(EXC-Se)的含量,显著提升了土壤硒的生物有效性。华中农业大学生命科学技术学院、农业微生物学国家重点实验室研究生罗雄和汪依婷为共同第一作者、郑世学教授和李明顺副教授为共同通讯作者,该工作得到国家自然科学基金41771283 和41967023的资助。
该工作是继课题组2021年在Science of the Total Environment(https://doi.org/10.1016/j.scitotenv.2021.148294,第一作者朱达辉、通讯作者郑世学)发表农杆菌T3F4氧化单质硒并促进小白菜富硒后的又一进展。此外,该团队近年在微生物硒氧化方面获批了5项国家发明专利。这些研究证实微生物广泛参与了有机硒和单质硒的氧化,进而增加土壤硒的生物有效性和植物可利用性,为植物富硒产业提供了新的思路。另一方面,该研究结果打通了硒的生物地球化学循环中的重要一环。
英文摘要:
Selenium (Se) is an essential trace element for life. Se reduction has attracted much attention in the microbial Se cycle, but there is less evidence for Se oxidation. In particular, it is unknown whether microorganisms oxidise organic Se(-II)。 In this study, four strains of bacteria, namely Dyella spp. LX-1 and LX-66, and Rhodanobacter spp. LX-99 and LX-100, isolated from seleniferous soil, were involved in the oxidation of selenomethionine (SeMet), selenocystine (SeCys2), selenourea and Se(0) to selenite (Se(IV)) in pure cultures. The oxidation rates of organic Se were more rapidly than those of Se(0) in liquid media. Then Se(0) and SeMet were used as examples, microbial oxidation was the predominant process for both additional Se(0) and SeMet in sterilised alkaline or acidic soils. The Se(IV) concentrations were significantly higher at pH 8.56 than at pH 5.25. In addition, water-soluble Se (SOLsingle bondSe) and exchangeable and carbonate-bound Se (EXC-Se) fractions increased dramatically with these four Se-oxidising bacteria in unsterilised seleniferous soil. To our knowledge, this is the first study to find that various bacteria are involved in the oxidation of organic Se to Se oxyanions, bridging the gap of Se redox in the Se biogeochemical cycle.
原文链接:
http://dx.doi.org/10.1016/j.scitotenv.2022.155203
免责声明:本站部分文章转载自网络,图文仅供行业学习交流使用,不做任何商业用途。文章仅代表原作者个人观点,其原创性及文章内容中图文的真实性、完整性等未经本站核实,仅供读者参考。